A Singularly Perturbed Boundary Value Problems with Fractional Powers of Elliptic Operators

نویسنده

  • Petr N. Vabishchevich
چکیده

A boundary value problem for a fractional power 0 < ε < 1 of the second-order elliptic operator is considered. The boundary value problem is singularly perturbed when ε→ 0. It is solved numerically using a time-dependent problem for a pseudo-parabolic equation. For the auxiliary Cauchy problem, the standard two-level schemes with weights are applied. The numerical results are presented for a model two-dimensional boundary value problem with a fractional power of an elliptic operator. Our work focuses on the solution of the boundary value problem with 0 < ε 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer

The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

An efficient numerical method for singularly perturbed second order ordinary differential equation

In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...

متن کامل

Numerical method for a system of second order singularly perturbed turning point problems

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

متن کامل

Uniformly Convergent Finite Element Methods for Singularly Perturbed Elliptic Boundary Value Problems I: Reaction-diffusion Type

{ We consider the bilinear nite element method on a Shishkin mesh for the singularly perturbed elliptic boundary value problem ?" 2 (@ 2 u @x 2 + @ 2 u @y 2) + a(x; y)u = f(x; y) in two space dimensions. By using a very sophisticated asymptotic expansion of Han et al. 11] and the technique we used in 17], we prove that our method achieves almost second-order uniform convergence rate in L 2-norm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016